In parallel with driving manufacturing, FPGA technology development must also include enhancements to design tools and flows. As vendors strive to make their devices more SoC- and ASIC-like, they are also adopting standards and collaborating with EDA companies to integrate their tools more seamlessly. These collaborations are producing great benefits for designers, as FPGA design methodologies are leading the way in areas that the EDA industry has long been promising new capabilities, such as in Electronic System Level (ESL) synthesis, IP integration and re-use, and higher-level tools for software/hardware co-design.
FPGA design methodologies have long integrated EDA point tools, such as simulation and PCB design, into FPGA vendor’s design platforms. Now, vendors such as Synopsys, with their Synplicity tools, and Xilinx with Vivado, are collaborating to build more complete integrated top-to-bottom flows. To address the greater complexity of FPGAs that may now contain up to two million equivalent logic cells, Synopsys has added Hierarchical Project Management (HPM) to Synplicity. HPM supports distributed design teams and parallel development, enabling partitioning of RTL and sharing of design debug tasks. Xilinx has adopted the industry-standard Synopsys Design Constraint (SDC) timing constraints (to replace Xilinx proprietary UDC) in a design flow that can be driven from standard Verilog HDL.
1.EASING IP INTEGRATION
2.INDUSTRY STANDARDS ENABLE HIGHER LEVELS OF ABSTRACTION
3.THE FUTURE OF FPGAS
...
http://dsp-fpga.com/articles/advances-in-eda-design-methodologies-led-by-next-generation-fpgas/
沒有留言:
張貼留言